翻訳と辞書
Words near each other
・ Uniformity of content
・ Uniformity of motive
・ Uniformity policy
・ Uniformity tape
・ Uniformizable space
・ Uniformization
・ Uniformization (probability theory)
・ Uniformization (set theory)
・ Uniformization theorem
・ Uniformly bounded representation
・ Uniformly Cauchy sequence
・ Uniformly connected space
・ Uniformly convex space
・ Uniformly distributed measure
・ Uniformly hyperfinite algebra
Uniformly most powerful test
・ Uniformly smooth space
・ Uniformology
・ Uniforms and insignia of the Kriegsmarine
・ Uniforms and insignia of the Schutzstaffel
・ Uniforms and insignia of the Sturmabteilung
・ Uniforms of Iraqi Armed Forces
・ Uniforms of La Grande Armée
・ Uniforms of the American Civil War
・ Uniforms of the Canadian Armed Forces
・ Uniforms of the Confederate States military forces
・ Uniforms of the Imperial Japanese Army
・ Uniforms of the Luftwaffe (1935–1945)
・ Uniforms of the New Zealand Army
・ Uniforms of the Royal Canadian Navy


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Uniformly most powerful test : ウィキペディア英語版
Uniformly most powerful test
In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power 1 − ''β'' among all possible tests of a given size ''α''. For example, according to the Neyman–Pearson lemma, the likelihood-ratio test is UMP for testing simple (point) hypotheses.
== Setting ==
Let X denote a random vector (corresponding to the measurements), taken from a parametrized family of probability density functions or probability mass functions f_(x), which depends on the unknown deterministic parameter \theta \in \Theta. The parameter space \Theta is partitioned into two disjoint sets \Theta_0 and \Theta_1. Let H_0 denote the hypothesis that \theta \in \Theta_0, and let H_1 denote the hypothesis that \theta \in \Theta_1.
The binary test of hypotheses is performed using a test function \phi(x).
:\phi(x) =
\begin
1 & \text x \in R \\
0 & \text x \in A
\end
meaning that H_1 is in force if the measurement X \in R and that H_0 is in force if the measurement X \in A.
Note that A \cup R is a disjoint covering of the measurement space.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Uniformly most powerful test」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.